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Transfer matrix approach to the three-dimensional Ising model 

Ph Audit 
Laboratoire PMTM, Universite Paris-Nord, 93430 Villetaneuse, France 

Received 22 July 1986 

Abstract. The { 11 1) plane to { 11 1) plane transfer matrix of the Ising model on a simple 
cubic lattice is obtained in a simple product form by using a purpose-built matrix product 
previously defined by this author. As a first application of this theoretical result, the exact 
analytic expression of the partition function of an Ising model on a 2 x 2 ~ ~  lattice is 
derived, 

1. Introduction 

To solve exactly a lattice model consists in obtaining an exact analytical expression 
of its partition function. So far, this goal has only been achieved for two types of 
three-dimensional king models. Firstly, exact solutions for systems of finite size with 
isotropic interactions have been obtained by computer-assisted counting of spin 
configurations (Katsura 1954, Ono et a1 1968, Binder 1972) up to the 4 ~ 4 x 4  size 
(Pearson 1982, Itzykson et a1 1983). Secondly, disorder solutions (Stephenson 1970), 
which benefit from some decoupling of the spin degrees of freedom in the model, have 
been derived recently (Jaekel and Maillard 1985). On the other hand, the transfer 
matrix formalism, so successful in solving one- and two-dimensional models, is gen- 
erally acknowledged not to be feasible in three dimensions. Notwithstanding, it is the 
purpose of the present paper to show the comparative ability of this method to provide 
such solutions. 

In a previous paper (Audit 1986), we proposed a new method to solve Ising systems 
and tested it by considering the smallest conceivable three-dimensional lattice (2 x 2 x 2) 
having anisotropic interactions and non-zero field whose roles in increasing the com- 
plexity of the solution were clearly illustrated. Basically the method, which is greatly 
improved in the present paper, consists in the proper use of a new purpose-built matrix 
product associated with other classical matrix products to build the transfer matrix; 
the choice of the [ 11 11 transfer direction and suitable periodic boundary conditions 
for the simple cubic lattice makes the computation far less complicated; and the 
resulting transfer matrix has a product form which is extremely symmetric and simple, 
thus suitable for both analytical and computational treatment. 

In this paper, we test the method further by deriving exact solutions for two limiting 
situations, where all dimensions are not kept finite as previously, namely the CO x CO x 2 
and 2 x 2 x 00 lattices. Those two simple cubic lattices have, respectively, the shapes 
of a double layer of (111) infinite planes and an infinite number of (111) planes 
consisting of four sites. Thus the former is simply related to a planar honeycomb 
lattice and can be solved trivially, whereas it appears that the latter (a bar with a 
rhomboid section) is the first genuine three-dimensional Ising model, having at least 
one dimension in which the system is infinite, to be solved exactly. 
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2188 Ph Audit 

2. The two-layer { 11 1) plane to { 11 1) plane transfer matrix 

The partition function of the anisotropic Ising model without field on a simple cubic 
lattice is defined by 

z( K K‘, K”)  = n (U I -  I , m n u l , m  - 1  , n  u1m.n  - 1  I P O  P’@ P”I v i m n u l m n u l m n )  
{uimn=*1} Imn 

x ( a i m n a / m n a i m n  I P @ P’ @ P”l U/+ 1 ,mn u l , m +  1 ,n  u l m , n +  1) ( 1 )  

where { ) stands for a sum over all configurations of sites ulmn, 0 is the direct product 
of matrices and 

P = eKZ + e-KX ( 2 )  

and similarly for P’ and P”, with K = J / k g T  ( J  being a coupling constant) and 

1 0  0 1  
z=(o  1)  x = ( 1  0). (3) 

In our method to build the transfer matrix, the natural direction of transfer is the 
[ l l l ]  direction. Thus it will be convenient to look at the simple cubic lattice as 
consisting of M x M x 2N sites arranged on { 1 1  1)  planes. Let 2N be the number of 
such planes (consisting of M 2  sites) that will be labelled i = 0 , 1 ,  . . . , 2 N  - 1;  we assume 
a periodic boundary condition in the [ 1 1  11 direction by identifying the planes 2N and 
0. The arrangement of sites in two neighbouring planes i and i + 1 is shown in figure 
1.  In each plane, the sites are arranged on a triangular lattice and their positions, by 
using an oblique coordinate system, are labelled with a pair of indices j ,  k = 
0, 1,  . . . , M - 1.  We impose the periodic boundary condition ( j ,  k )  = ( j +  M, k )  = 
( j ,  k + M )  in the planes ( 1 1 1 ) .  It is important to notice that a spin in a plane ( 1 1 1 )  
interacts only with spins in the two neighbouring ( 11 1)  planes, whereas spins belonging 
to the same plane do not interact. In fact, it is the use of the transfer direction [ 1 1  11 
which dictated the above choice of periodic boundary conditions in order to ensure 
that all spin interactions occur between the neighbouring planes only. On the contrary, 
the usual periodic boundary conditions for a cubic lattice would fit endpoints belonging 
to different { 1 1  1)  planes. 

Figure 1. Spins in two adjacent 1111) planes. 
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Relabelling spins with new indices i, j ,  k the partition function (1) can be con- 
veniently written as 

Z M x M x Z N ( K ,  K ‘ ,  K ” )  
2 N - l  M - l  

= n n ( ~ i - l , j k ~ i - I , j - l , k ‘ i - l , j , k - l / P @ p l @ p ”  
( u , , k = * l }  1=0 j , k = O  

~ u ~ k u ~ k u y k ~ ~ u ~ j k u V k ( + y k ~ p @ P ’ @ p ’ ~ u ~ + l , j k u r + l . j - I , k u ~ + l , ~ , k - l ) ~  (4) 

To calculate this expression, we shall use the purpose-built matrix product between 
direct products of 2 x 2 matrices, defined in a previous paper (Audit 1986). For the 
case considered at hand, namely an anisotropic Ising model in zero field, the more 
general definition of this special product, denoted by x, reduces to the form 

(ii’i’’l( A @ A’@ A”) x ( A  @ A’@ A”)I kk’k”)  

= (ii’i”1A @ A’@ A”[ j j j ) (  jjjlA @ A’@ A #  kk’k”)  
j 

which can be rewritten in terms of the Pauli matrix 

. = ( I  0 - 1  0) 

as 

22(A @ A’@ A”) x ( A  @ A’@ A”) = A’@ A‘’@ A”’+ A’@ A’Z, 

+ AZA @ A” @ A”ZA” + AZA @ A’ZA’O A ” ~  

or alternatively in the most convenient form 

23(A@A’@A”) x ( A O A ’ O A ’ ’ )  

Now, after a partial summation over spins in every odd plane performed by means of 
expression ( 5 )  in (4), and upon changing the index i of summation, we are left with 
the following sum over alternate planes: 

N - 1  M - l  

Z M X M X Z N ( ~ ,  K ’ ,  K ” )  = 1 n ~ ‘ ~ k u ~ , j - l , k u ~ , j , k - l ~  
{ U , ~ ~ = * I )  1 = 0  j , k = O  

( @ p’ @ p, ( @ p’ @ I UI + 1 , j k  ut + 1 ,j - 1 , k  (+ I+ 1 , j . k  - I )  

or, by using the identity (7),  this expression can be reorganised as 

N - l  M - l  

Z M x M x 2 N ( K ,  K ‘ ,  K ” ) = 2 - 3 N M 2  n n ( ( + y k u t , j - l , k ( + y , k - l l  
{ ~ , ~ k = * l )  1=0 j , k = O  

@ R:,k @ R ~ l ~ ~ u l + l , j k u r + l . j - l , k u + I f l , j , k - l )  
E , l ; = * l  

with 

R, = P 2 +  EPZP 



2190 Ph Audit 

and similarly for R: and R f .  By taking the direct product properties into account we 
find 

or, after reordering terms of the multiple direct product no, 

The expression (12) can be further condensed by making use of the Hadamard product, 
denoted 0, which is simply related to the direct product 0 by 

( i i i  / A  0 B @ C I j j j )  = ( i )  A 0 B 0 C) j ) .  (13) 

Then one obtains 

and a summation over the remaining spins yields the result 

Z M x M x Z N ( K ,  K ' ,  K " )  = 2-3NM2 Tr 

where 
M - l  

is the two-layer transfer matrix in the [ l l l ]  direction. Then, by using the relation 

(AOB)@(COD)=(AOC)O(BOD) (17)  

(which links the Hadamard and direct products) an alternative expression of the 
two-layer transfer matrix can be obtained from (16) in the form of a multiple Hadamard 
product no, namely 

M - l  
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where 

k 

with 

UBM = U @  U @  U @ .  * . ( M  times) 

U = I + X  (20) 

and 

eZK 1 
R = 2 (  e-2K)  

and similarly for R' and R". Likewise, we have 

& ( K ,  K ' ,  K " )  = Sjk(-K, - K ' ,  - K " ) .  

It is convenient for writing the elements of the 2M2 x 2M2 matrices that we consider 
in this paper, to label their rows and columns, respectively, by the vectors 

~ = ( I L O O , . . . , ~ O , M - I , ~ I O , . . . ~  P I , M - I , . * . ,  P M - l , O ~ * . . , / l . M - I , M - l )  (23) 

y = ( v O O ~  . .  . I vO,M-I, vlO,. . .  9 v I , M - l ,  . .  . 9 v M - l , O , .  . . 9 v M - I , M - I )  (24) 
whose components can take the values + 1  and -1 ,  and can be thought of as the spins 
in two { 1 1  l }  planes. Thus, the elements of the matrix (19) can be written in the form 

(25) (p 13, I v, = 23 exp[ ( c ( l k  + v]k ) + ' ( P I -  1.k + '1 - I , k  + "(P1.k- 1 + v ~ , k -  111 

and (18) yields the expression 
M - l  

(p  1 I v >  = 24M2 fl cosh[ ( P J k  + vjk ) + '( P] - 1 ,k + - 1, k + "( P],k- 1 + v ~ ,  k - 1 ) 1 
] , k = O  

(26) 
for the elements of the two-layer transfer matrix. 

3. The partition function of an 00 x CD x 2 Ising model 

Now, we consider the simple case of an isotropic Ising model on a couple of { 1 1  1 )  
planes, with periodic boundary conditions in the [ 1 1  11 direction. Despite its genuine 
three-dimensional geometry, this model is in fact equivalent to a planar honeycomb 
model, having an interaction constant 2K, because each spin interacts twice with its 
three neighbours located in the other plane. 

The partition function of the honeycomb Ising model being already known 
(Houtappel 1950), we thus have the opportunity to check the validity of our previous 
theoretical results and to obtain at little cost the solution of an infinite two-layer Ising 
model. 

The partition function (15)  is in this case 

Tr @M,M. (27) 
- 2 - 3 M 2  

zM x M x 2 - 
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Making use of the diagonal elements of the transfer matrix, obtained from (26), follows 
the expression 

which is just the partition function of a M 2  sites isotropic Ising model on a honeycomb 
lattice, with a coupling constant 2 K  (Baxter 1982, see (6.4.4)) as was expected. 

Now making use of Houtappel's result, the partition function per spin of the 
coxcox2 Ising model is given by 

-sinh24K[cos w,+cos w2+cos(wl+w2)]} dw, dw,. (29) 

The critical point is obtained, from (29), when the coupling constant satisfies the 
relation 

cosh 4K, = 2. (30) 

Hence the critical constant of the coxcox2 Ising model is 

K ,  = $142  +&) = 0.3292 

a value which happens to be halfway between the exact value 5 In( 1 +&) = 0.4407 of 
the 00 x CO square model and the numerically estimated value 0.221 66 for the CO x 43 x cc 
cubic model (Pawley et a1 1984). Thus the quite strong three-dimensional behaviour 
of the double layer model is clearly demonstrated. 

4. The factorisation of the transfer matrix 

The calculation in § 2 yielded directly the two-layer transfer matrix OM,,, yet it could 
sometimes be more convenient to use a one-layer transfer matrix having a simpler 
expression that is derived below. 

Let a 2 M 2 ~  1 matrix be defined as 
j j - 1  j 
n n n  

s. Jk = uBM 0. . . @ ( U @ .  . .Or"@. . .@ u ) , @ L u @ . .  .@ r '@ r @ .  , . @ U ) , @ .  . . @ u B M  (32) 
k k - 1  

with 

(and similarly for r' and r" ) .  (33) 

Likewise, we define the matrix 

$k(K, K ' ,  K " )  = S j k ( - K ,  - K ' ,  -K''). 

Clearly we have, from definitions (21) and (33), 

R = rr' 

where ' denotes the transpose. It follows that 
s. = s. s! 

Jk Jk J k *  
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Then the expression (18 )  of the two-layer transfer matrix can be rewritten in the form 
M - l  

~ M . M  = n" (SjkS:k + $ k s : k ) ,  
j .k=O 

Taking into account the simple relation 

SI s: 0s2s:o .  . . = (SI 0 s20 .  . .)(S: 0s:o. * .) 

(37 )  

which holds true provided that s, ( i  = 1,2, . . .) are column matrices; it turns out that 
the matrix (37 )  factorises in the form of the product 

0 M . M  = TM,MTtM,M (39) 

where the M 2 x  M2 matrix TM,M is given by a multiple Hadamard product of M2 
multiple direct products as 

TM,M = { [ s o o s ~ o ] @ u ' @ u ' @ . .  . ~ U ' } ~ { U ' ~ [ S O ~ ~ ~ ~ ] ~ U f ~ . .  .@U'}O * .  . 
O{u'O. .  . @ [ s M - ~ , M - I S M  - l , M - i ] }  (40) 

or in condensed form as 
M - l  

TM,M = n" T j k  
j .k=O 

where the 2M2 x 2 M 2  matrix T;k is 

in which the 2 M 2  x 2 matrix [ S j k $ k ]  occupies the kth position in the j th  factor of the 
multiple direct product. 

Consideration of (32)-(34), (41) and (42) yields, for the matrix elements, the 
following expressions: 

T j k = U f B M @ .  . .@(U'@. . . @ [ S j k $ k ] @ .  . . @ U ' ) @ .  . . @ U t m M  (42) 

(p I T j k  I V )  = 23'2 exp[ ( K p ; k  + 'p; - 1, k + " p j , k  - 1 vjk 1 (43) 

M-I n exp[(Kvjk+ K ' v ~ - l , k + K " v ~ , k - l ) ~ j k l  (45) 

n exp[(KpJk-k K ' ~ j + l , k + " ' ~ J , k + l ) v ~ k l .  (46) 

J,k=O 

M-1 
- - 2 3 M 2 / 2  

j , k = O  

Using the M x M unit matrix 1 and the M x M cyclic matrices m,  and m-,  , whose 
entries are respectively (Audit 1985a, b) 

The elements (44), (46) of the transfer matrix can be put in a more condensed form as 

(pi T I M , M ~ V ) = ~ ~ ~ ~ / ~  exp{(pIK 10 1 -k K ' m , @  1 + K " l @ m l / V ) }  (49) 
(pi T ~ , M I  V) = 2 3M2/2 eXp{(pIK 1 0  1 -k K'm-,@ 1 + K"1@ m-llV)}. (50) 

Moreover, (44) can be rewritten in terms of the matrices (2) as 

(51) 
3M2/2  M - l  

] ,k=O 
( p  1 T M , M  1 V >  = n ( p j k l  v J k ) ( p j -  L ,k lp ' \  v j k ) ( p j , k -  11 p " I  v j k )  
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or in condensed form as 

(pi T , M l v )  = 2 3 M 2 ’ 2 ( p J p O M 2 ) y ) ( p ( m , 0  l ) ~ P ’ ~ M 2 ~ v ) ( p ( 1 ~ m l ) ~ P ’ r O M 2  I v). ( 5 2 )  

A global expression of the transfer matrix follows, of the form 

= 2 3 ~ ~ / 2 ( p 0 ~ ~ 0  G ~ @ M ~ ~ H ~ , ~ O M ~  1 (53) 

where G and H are row permutation matrices corresponding to the transformations 
(pl+(p(mlOl)l and (pJ  +(p( lOml) \ ,  respectively. 

Thus the two-layer transfer matrix (39) factorises in the simple form 
@ M , M  = 23M2( p O M ’ o  , - p t O M 2 0  ~ p t r O M ’ ) (  p O M 2  0 p , @ M 2 G t 0  p , r O M 2  H ’ )  (54) 

where it appears to be straightforward to build it up from the simple matrices P, P’ ,  P”. 

5. The partition function of the 2 x 2 ~ 0 0  Ising model 

It could be instructive to illustrate the results obtained in Q 4 by considering the simple 
case of a simple cubic lattice consisting of 2 N  { 11 1) planes made up of four sites each, 
as illustrated in figure 2 ( a ) .  Because of the periodic boundary condition in (111) 
planes, this lattice is in fact equivalent to the lattice shown in figure 2( b ) ,  whose shape 
is a bar limited by two rhomboid end planes. 

Comparing (44) and (46) and taking into account the periodic boundary conditions, 
we notice that T2,2 = T:,2; the partition function (15) in this case is 

Z2x2x2N ~ 2 - l ’ ~  Tr T:,: (55) 
and the 16x 16 one-layer transfer matrix is obtained from (44) or (53) in the following 
form: 

r*,2 = 2‘ 

e12K ebK e6K e h K  e - 6 K  e 6 K  1 e - 6 K  1 e - h K  e - 6 K  e - 1 2  

e6K e4K e4K e 2 K  e4K e 2 K  e2K 1 e - 2 K  e - 2 K  e - 4 K  e - 2 K  e - 4 K  e - 4 K  e - 6 1  

e h K  e 4 K  e4K e 2 K  1 e-ZK e - 2 K  e - 4 K  e4K e 2 K  e2K I e - 2 K  e - 4 K  e - 4 K  e - b t  

1 e2K e - 4 K  e - 2 K  e - 2 K  I 1 e 2 K  e-2K e2K e 2 K  e4K e - 2 K  

e b K  e4K e - 2 K  e4K e2K e - 2 K  e - 4 K  e4K e2K e - 2 K  e - 4 K  e2K e-4K e-61 

e 2 K  e - 2 K  e2K e4K , e2K e - 2 K  e - 4 K  e - 2 K  e 2 K  e-ZK 

e - 4 K  e - 2 K  e 2 K  e 4 K  e2K e 2 K  e - 2 K  e 2 K  e - 2 K  

1 

1 I e - 2 K  

e J K  e - 4 K  e2K e - 2 K  e4K e - 2 K  e4K I e b K  

1 e-” 

e - b K  e-4K e 2 K  e - 4 K  e2K e - Z K  

ebK e4K e - 2 K  e4K e - 2 K  e 2 K  e - 4 K  e4K e - 2 K  e 2 K  e - 4 K  e 2 K  e-4K 

1 e - 2 K  e2K e 2 K  e 4 K  e 2 K  e - 2 K  e - 4 K  I e - 2 K  e - 2 K  e 2 K  1 

I e - 2 K  e 1 e - 2 K  e2K I e 4 K  e2K I e - 2 K  e 2 K  I 

e-6K e-4K 

e2K e - 2 K  - 4 K  

1 e4K e6K e 2 K  e - 4 K  e - 2 K  e2K e4K e - 4 K  e - 2 K  e 2 K  e4K e - 2 K  

1 e - 2 K  e - 2 K  e - l K  e 2 K  I I e - 2 K  e2K e - 2 K  e 4 K  e 2 K  e2K 

e - b K  e -4K  e-4K e - 2 K  I e 2 K  e 2 K  e 4 K  e - 4 K  e - 2 K  e - 2 K  1 e Z K  e4K e4K ebK 

e - b K  e - 4 K  e - 4 K  e - 2 K  e - 4 K  e - Z K  e - 2 K  I 1 e2K e2K e4K e2K e4K e 4 K  e 6 K  

e - 1 2 K  e - b K  e - 6 K  I 1 ebK 1 ebK ebK e 1 2 X  I e-hK I I ebK e - h K  

(56) 
The matrix T2,2 reduces to a block diagonal form by the similarity transformation 

( 5 7 )  T;,2 = 2 - ’ ( Z O  ZOZO Z + X O X O X O X )  T2, , (Z@ ZO ZO Z + X O X O X O X )  
r o  

= 2 7 ( 0  
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[a1 

A d 5 1  0 

2195 

I bi 

/ 

001 101 201 301 

200 ' 011 111, 1 211l I 3111 I hill 1 5111 

d v 
000 /lo0 200 ' 300 400 ' '500 

310 110 210 310 410 510 

Figure 2. Two equivalent representations of the 2 x 2 x 2 N  simple cubic lattice 

where 

r =  

with 

C, = c o s h ( a K )  

and 

The determination of the eigenvalues is trivial if K = 0, we find in this case: A I = 8, 
A 2  =. . . = A 8  = 0 for the matrix r and A9 = . . . = A16 = 0 for the matrix 2; hence the 
largest - and unique non-zero eigenvalue of T2,,(0) is 2". 

Thus, the block r contains the largest eigenvalue A, of the T2,2 matrix, and  in the 
limit N + a, according to Perron's theorem, (55) reduces to 

ZZx2x2N = ( 2 A , ) 2 N .  (61) 
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Further similarity transformations yield the following block diagonal form for the I' 
matrix: 

C I 2  2% 45 0 0 0 0 0 

2c6 3c4+1 2J3c2 o 0 0 0 0 
J5 2 h c ,  c,+2 0 0 0 0 0 
0 0 0 c4-1 0 0 0 0 
0 0 0 0 c , - l  0 0 0 
0 0 0 0 0 1-c ,  0 0 
0 0 0 0 0 0 c , - l  0 

0 0 0 0 0 0 0 c,-I 

from which we infer that the largest eigenvalue A,,, of the matrix r is just the largest 
root of the polynomial of degree 3 

A 3 + a 2 h 2 + a l h + a o = 0  (63) 
where 

a0 = c,z(-3C:-7c,+ 12c:-2) +4c;(c4+2) -24c,C2+9c,+ 3 

a, = cl,( 4c4 + 3) - 4 4  + c4( 3 c, + 7 )  - I 2 c: - 1 

a, = -c12 - 4c, - 3. 

To write out the solution of (63), by means of Cardan's formula, let us define the 
quantities 

U = --la 

p = 3 U' + 2a2u + a, 

3 2  

q = u3+  azu2+ a l u  + a,. 

The discriminant 

A = -4p3 - 27q2 

is found to be positive V K .  Thus the three roots of (63) are real and  the largest one 
is in the form 

A,,, = U + 22'3( q2 + A/27)"6 cos $ tan-' - [ (;;;:)I. 
Finally by substituting (65) in (61) the partition function of the 2 x 2 x oc Ising model 
follows and  its free energy per spin is given by 

F r x z x n  = -$kT ln(2A,). (66) 
Differentiation of (66) to obtain other thermodynamic functions is indeed possible, 
but results in huge formulae that will not be given here. But it is interesting to note 
that the cosine in (65) has a minimum at K -0,258. 

6. Conclusion 

Thus, by looking at the simple cubic lattice as layers of interacting hexagonal lattices 
whose interactions are best described by using our  special matrix product, the transfer 
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matrix of the three-dimensional Ising model on a simple cubic lattice has been obtained 
in a very simple factorised form, which exhibits a great symmetry that could remain 
hidden by following a different approach. This symmetry is indeed actually more 
pronounced in the considered case of the 2 x 2 x 00 model, where it drastically reduces 
the effective dimensionality of the transfer matrix from 16 x 16 to 3 x 3, but it also 
seems to remain available, when moving up to larger sized lattices, that will be treated 
analytically or numerically in the near future by using the present theoretical results. 
The importance of such studies has been clearly demonstrated recently by Martin 
(1986). 
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